GPR Applications-Florida Practices

Wang, Guangming, Ph.D, P.E. State Pavement Performance Engineer

Non-Destructive Evaluation (NDE) Technologies for Evaluating Asphalt Pavement-Virtual User-Group Peer Exchange

September 28-29, 2021

Overview

GPR Applications
 Air-Launched GPR
 Ground-Coupled GPR

PaveScan

≻Mini XT

FD

FDOT GPR Program

- ➢ 30 Years in Production
 - 26,000 Lane Miles
 - **2,000** Projects
- Statewide Predesign Evaluation of In-Service Roadways
 - Thickness of Pavement Layers
- Pavement Forensic Investigations
 - Premature Failure / Distress
 - Sink holes / Voids

SharePoint Pre-Design Request

BROWSE

SharePoint List Pavement Pavement Condition

Pre-Design District Contacts

Pavement Marking Mgt

Pavement Performance

Pavement Research

Quick Links Department Contacts Department Resources Public Notices Technology Resources

Pavement Performance Workspace

Documents

Friction

Mobile Retroreflectivity

FD

Pre-Design

Other Resources

	One-Time Special F	Projects I	High Friction Surf	ace Treatment	Pre	-Design									
l	PRE-DESIGN														
	Submit New Project(s)	District 1	District 2	District 3	District 4	District 5	District 6	District 7	Turnpike	Statewide					
	Mutiple Projects	Pending	Pending	Pending	Pending	Pending	Pending	Pending	Pending	Pending					
	Single Project	Reported Las 90 Days	Reported Last 90 Days	Reported Las 90 Days											
	Email	All Projects	All Projects	All Projects	All Projects	All Projects	All Projects	All Projects	All Projects	All Projects					

Example of Pre-Design Thickness Report

STIMMARY OF DAVEMENT STRVEY	
COUNTY Manates OPPArtement of Partement of Partest Date 27-Aug-08	
N 422496-1	
TE ROAD 93 EPOST LIMIT 8/8LM P 0.000 to 3.760	
VEMENT TYPE	
Mileoos Lates	
From To L1 R1 L2 R2 L3 R3	
0.000 3.750 F	Day amont Types
erd:	
Plexele, R = Rgia, B = Composite (HMA/ POC) and W = Composite (PCCHMA)	
285	
There maybe a concrete base.	
UMMARY STATISTICS& PLOT SETTINGS (Please use the menu in this block to modify the settings.)	
Display: 🔽 Statistics 🔽 Plats	
Data: @Thickness for @HMA or @PCC	
C Cross Clope	
C. Ruk Dispth	
Lanes: R Al or R LIRI R L2R2 R L3R3 R L4R4 R L5R5 R L5R5	
Limits: Minimum Maximum Maj. Unit Min. Unit	
y 0.0 18.0 20 1.00	Pacie Statistics for
Units: In.	
Lane # L-Direction R-Direction	Thiskness
1 10.88 0.68 1426 8.84 11.25 0.7 13.89 8.71	i inickness
2 11 0.72 1429 8.89 11.39 0.66 1434 9.61	
3 10.93 0.66 1398 8.92 10.96 0.63 1317 8.91	
OT 8	
Cristianal Persolation ng Kur Dan Paterson (1917) Manuning Cristian 2 Section 19175	
SR 537 M F 6 # 2.70	
80 L	
0.7	
اللابيان ويتعادره بسليق المشج ومعتوانا فالشراج ومرتبا واللاب والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
2 8(2)	
$\equiv -622$	
10	
nol	
.dloc abot 1.000 1.500 2.001 2.500 3.500	
Nil at	
<u> </u>	

Air Launched GPR

- High frequency (1GHz or 2GHz) antennas for pavement surveys
- Operate at highway speed, no traffic restrictions required
- Estimate existing pavement thickness "continuously" and nondestructively
- "Engineered Coring Plan
 - Minimize coring to reduce costs
 - Core verification
 - Isolate areas

GPR vs Coring

	GPR	Coring
Operating speed	Highway speed	Stationary
Traffic restrictions	None	Lane closure
Thickness accuracy	Approximation	Exact
Number of thickness data per lane per mile	52 to 5280	1 to 3

GPR Precision Study

- Seven sites selected for pavement thickness accuracy and repeatability studies
- Four different pavement types used:
 - Flexible (HMA)
 - Rigid (PCC)
 - HMA overlaid PCC
 - PCC overlaid HMA
- Varying pavement thickness

Data Collection (GPR/Core)

Stationary GPR data collected and locations marked for coring

Accuracy of Air Launched GPR

Florida Department of Transportation

Repeatability of Air Launched GPR

Repeatability in terms of COV within 10 %

FDOT Florida Department of Transportation

Case-I-75 in Marion County

- 6 lane resurfacing
- Lanes L1 and R1 were constructed at different dates
- GPR survey requested to assist in the engineering coring plan
- Safety issue to core in middle passing lane

GPR Profiles per Lane

- Similar thickness profiles between L2, R2 and L3, R3
- Thickness Variability
- District decided NOT to core lanes L2 and R2
- Reduced MOT and Total savings = \$ 4,000

L2: Original pavement

Thickness Variability

Follow Up, GPR vs Cores

→ GPR Thickness Prediction → Core Thickness

Ground-Coupled GPR

- Antennas of various frequencies (100 MHz to 900 MHz)
- Used for pavement surveys and forensics
- Handheld, requires traffic restrictions
- Lower frequency antennas offer greater penetration depths but lower resolution
- Higher frequency antennas offer greater resolution but lower penetration depths

Ground-Coupled GPR Applications

Underground Utilities

Sinkhole Investigations

Pavement Depressions/High Moisture

FD

SR 24/Waldo Road, Alachua County, FL

Removing steel plate over pavement depression

Pavement depression after steel plate was removed

GPR Test Layout

GPR testing directly over the Pavement Depression

GPR Results

FD

Longitudinal GPR pass 10 indicate potential shifting soils and void around pavement depression

Transverse GPR pass 6 indicate potential shifting soils and void around pavement depression

S Florida Department of Transportation

On-Site Voids Confirmation

• Maintenance breaking out center of Pavement Depression for visual access

• Void revealed when pavement was removed

South Bound Roosevelt Bridge Approach Slab in Stuart, Florida

Testing Schematic

Bridge Approach Slap Voids-3D Rendering

PaveScan Applications

- PaveScan device used to determine relative density of asphaltic layer
- Quality assurance/quality control of new pavements
- Real-time dielectric measurements that correlate to density
- Allows for on-site continuous evaluation of relative compaction effectiveness

PaveScan Applications: Static/Vibratory Compaction Experiment

SMO Test Strip

Static/Vibratory Compaction

CO
 Federal Highway Administration
 CO
 FESOURCE CENTER
 OF SERV
 OF SERV

Florida Department of Transportation

2

Federa

Static/Roller Compaction Results

Plot of % Density (Cores) and GPR Dielectric Values

PaveScan Applications- Temperature Study

PaveScan Applications-SMO APT Lane 5

GPR Dielectric Values and Thermal Imaging Profile

 \Im Florida Department of Transportation

PaveScan Applications: RoadWorms-SR 26, Alachua, FL

PaveScan Applications-Florida Concrete Test Road-US 301

 52 Test Sections Distributed Into 3 Experimental Groups: Structural (20 Test sections), Drainage (16 Test sections), and Calibration (16Test sections),

									Sout	hbound U	s 301 · -									
	Northbound US 301																			
																<u> </u>				
					1 2 3 4 5		1 1 1 1 1	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	2 3 3 3 3	3 3 3 3 3	3444	4 4 4 4	4 4 5 5 5					
				[Structural	Experiment			Drainage Experiment Calibo			Calibrat	tion Experim	ent]				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	10" PCC	10" PCC	8" PCC	10" PCC	7" PCC (RAP)	6" PCC	7" PCC	7" PCC	6" PCC	7" PCC (RAP)	7" PCC	7" PCC	7" PCC	10" PCC	8" PCC	6" PCC	7" PCC	6" PCC 6' X 6' Slabs with Fiber	7" PCC	6" PCC 6' X 6' Slabs with Fiber
	(1011)		4" Type B	(iou)	4" Type B	4" Type B	2"Type B	4" Type B	4" Type B	4" Туре В	2" Type B	12 ^e Special	4" LR Base (LBR 100)	2" Type SP	2" Type SP 4" LR Base	2"Type SP 4"LR Base (LBR 100)	2"Type SP 4"LR Base	2" Type SP 4" LR Base (LBR 100)	4" LR Base (LBR 100)	2" Type SP 4" LR Base (LBR 100)
	4" Type B	4" Type B		4" Type B	12"	12" Stabilized	12" Stabilized	12"	12" Stabilized	12"	12" Stabilized	Select (A-3)	12"	4" LR Base (LBR 100)	(LBR 100)		(LBR 100)		12"	
	12"	12"	12" Stabilized	12"	Stabilized Subgrade	Subgrade (LBR 40)	Subgrade (LBR 40)	Stabilized Subgrade	Subgrade (LBR 40)	Stabilized Subgrade	Subgrade (LBR 40)		Stabilized Subgrade		12"	12" Stabilized Subgrade	12" Stabilized	12" Stabilized	Stabilized Subgrade	12" Stabilized
	Stabilized Subgrade (LBR 40)	Stabilized Subgrade (LBR 40)	(LBR40)	Stabilized Subgrade (LBR 40)	(LBR 40)			(LBR 40)		(LBR 40)			(LBR 40)	12" Stabilized	Stabilized Subgrade (LBR 40)	(LBR 40)	Subgrade (LBR 40)	(LBR 40)	(LBR 40)	(LBR40)
	(201(40)	(101(40)		(201040)										(LBR 40)	(110)(110)					
Length (ft)	225	225	225	225	225	225	225	225	225	225	225	225	225	225	225	225	225	225	225	125
oint Spacing(ft)	15	15	15	15	13	12	13	13	12	13	13	13	13	15	15	12	13	6	13	6
Edge Drain	Ý	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ň	Y

PaveScan Applications-Florida Concrete Test Road-US 301

• Propose Using PaveScan to Measure Concrete Slab Curing Rate

PaveScan Applications-Florida Concrete Test Road-US 301

Dielectric Values vs Concrete Curing Time

StructureScan Mini XT

- Antenna Frequency 2.7 GHZ
- Mainly for locating reinforcements in concrete

Transverse and Longitudinal Reinforcement Bar Spacing

Transverse and Longitudinal Reinforcement Bar Spacing

Challenges on GPR Applications

- Bridge Deck Corrosions
- Delamination in Asphalt Layers
- Limited to the Localized Survey
- MOT Support

Moving Forward-New GPR Technology

- 3D Radar
- High Speed Mobile
- 21 Antenna Array/6 ft wide
- Step Frequency

 ✓ 100 MHZ to 3 GHz
- Continuous
- Up to 6 ft depth

